Geri Dönüş Yolu: Eğitim Öğretim İle İlgili Belgeler > Konu Anlatımlı Dersler > Matematik Dersi İle İlgili Konu Anlatımlar

KARMAŞIK SAYILAR, KOMPLEKS SAYILAR, KARMAŞIK SAYILARIN ÖZELLİKLERİ (MATEMATİK DERSİ İLE İLGİLİ KONU ANLATIMLAR, ÖRNEKLER, ÇÖZÜMLÜ SORULAR)

 

A)Sanal Sayı Kavramı

 

Sıfırdan farklı her reel sayının karesi pozitiftir, negatif olamaz. Sıfırın karesi sıfırdır.

 

Biz sanal olarak karesi negatif olan bir sayı düşünelim.

 

Örneğin karesi -1 olan bir sayı alırsak bu sayı bir sanal sayıdır. Bu sayıyı 'i' harfi ile gösterirler.

 

O halde    dir.

Buna göre i sanal sayısı karesi -1 olan bir sayıdır.(  )

Bu gösterimde

 

Dikkat edilirse i'nin kuvvetleri daima {i,-1,-i,1}dir.

 

*değerinin hangi eleman olduğunu şöyle buluruz: i nin üssü olan n sayısını 4'e böleriz.

 

Eğer:

 

kalan 0 ise sonuç 1

 

kalan 1 ise sonuç i

 

kalan 2 ise sonuç -1

 

kalan 3 ise sonuç -i dir.

 

 

Sanal Sayılarla İşlemler

 

Toplama, çıkarma ve çarpmada (i)'yi bir harf gibi alır, sonuçta (i)'nin bir kuvveti varsa değerini yazarak işlemi yaparız.

 

Örneğin:

 

a)2i+3i-5i+6i=6i

 

b)3i-5i+i=-i

 

c)

 

 

Örnek=   olduğuna göre

 

Cevap= 127 yi 4 e bölersek 3, 445 i bölersek 1, 1997 yi bölersek 1 kalır yani:

 

 bulunur.

 

 

B)Karmaşık Sayılar

 

 olmak üzere a+bi=z sayısına karmaşık sayı denir.

 

 ifadesinde katsayılar reel sayı, üsler doğal sayı olduğu zaman P(x) bir polinom olur.

 

Her P(x) polinomu için  alındığında P(i) nin daima a+bi olacağını görürüz.

 

 

Karmaşık sayılar kümesi C harfi ile gösterilir.

 

 

Bir karmaşık sayı iki kısımdan oluşur. Bunlar reel kısım ve sanal kısımlardır.

 

z=a+bi karmaşık sayısında (bilgi yelpazesi.net) a reel kısım, b ise sanal kısımdır.

 

Reel kısım Re(z)=a, sanal kısım İm(z)=b biçiminde yazılarak gösterilir.

 

 

Karmaşık Sayıların Eşitliği

 

yani a+bi=x+yi ise a=x,b=y dir.

 

Eşit karmaşık sayılarda reel kısımlar bir birine, sanal kısımlar birbirine eşittir.

 

 

Karmaşık Sayının Eşleniği

 

Bir karmaşık sayının eşleniği, sanal kısmın işareti değiştirilerek elde edilen karmaşık sayıdır. Eşlenik sayı, esas karmaşık sayının üstüne bir çizgi çekilerek belirlenir.

z=a+bi ise eşleniği   dir.

 

3+2i nin eşleniği 3-2i dir.

 

 

KARMAŞIK SAYILARDA İŞLEMLER

 

Karmaşık sayılarla, toplama çıkarma ve çarpma işlemleri polinomlarda olduğu gibi yapılır.

 

Toplama İşlemi

 

Toplamada, reel kısımlar toplanıp reel kısım; sanal kısımlar toplanıp sanal kısım bulunur.

 

Karmaşık sayılarda toplama işleminin etkisiz elemanı reel ve sanal kısımları 0(sıfır) olan karmaşık sayıdır.

 

Bir z karmaşık sayısının toplamaya göre tersi -z dir.

 

Örnek=

 

z'=3-2i , z^=5+7i , z^^=-6+3i olduğuna göre z'+z^+z^^ toplamı nedir?

 

Cevap=

(3-2i)+(5+7i)+(-6+3i)ise

3+5-6=2  ve -2i+7i+3i=8i dir.

=2+8i

 

 

Çıkarma İşlemi

 

İki karmaşık sayının farkı, için çıkan sayının toplamaya göre tersi ile toplamı yapılır, yani çıkan sayının işaretleri değiştirilerek toplama yapılır.

 

Örnek=

 

z=5+2i ve z'=4-3i ise z-z'=?

 

Cevap=

 

z-z'=(5+2i)-(4-3i)

=5+2i-4+3i

=1+5i  bulunur.

 

 

Çarpma İşlemi

 

Polinomlarda olduğu gibi yapılır. i nin kuvvetleri i türünden hesaplanarak çarpma işlemi yapılır.

 

Örnek=

z=3+4i ve z'=2-3i ise

z.z'=(3+4i).(2-3i)

=6-9i+8i+12

=6-9i+8i+12

=18-i bulunur.

 

 

Bölme İşlemi

 

Pay ve payda, paydanın (bilgi yelpazesi.net) eşleniği ile çarpılarak yapılır.

 

Örnek=

 

olduğuna göre 3+2i işleminin sonucu nedir?

 

Cevap=

3+2i = (3+2i).(5+3i) = 15+9i+10i+6

5-3i   (5-3i).(5+3i)         25-9i

 

=15+9i10i-6 = 9+19i  bulunur.

25+9        34

 

 

Eşlenik İfadelerde Özellikler

 

 

 

MUTLAK DEĞER

 

 

KARMAŞIK DÜZLEM

 

z=a+bi karmaşık sayısında a ve b gerçek sayılardır. Karmaşık sayılarda daima Reel kısım önce, sanal kısım sonra yazılır.

 

Bu tür yazma biçimi, karmaşık sayıları reel sayı ikilileri ile gösterme kolaylığı sağlar.

 

z=a+bi karmaşık sayısı z=(a,b) şeklinde yazılabilir.

 

Örneğin

 

z=(3,-2) karmaşık sayısı z=3-2i dir.

 

Bunu analitik düzlemde düşünebiliriz. Bu durumda ilk sayı reel kısmı, ikinci sayı sanal kısım olarak alınınca bir nokta belirler.

 

Bu gösterimde yatay eksen reel ekseni, düşey eksen de sanal ekseni belirtir.

 

 

Karmaşık sayının karmaşık düzlemde nokta olarak gösterilmesine, karmaşık sayının karmaşık düzlemdeki görüntüsü denir.

 

Bir karmaşık düzlemde her nokta bir karmaşık sayı, her karmaşık sayı da bir noktayı gösterir. Yani karmaşık düzlemdeki noktalar ile bütün karmaşık sayılar bire bir eşlenebilirler.

 

Aşağıda bazı karmaşık sayıların (bilgi yelpazesi.net) karmaşık düzlemde görüntülerini görebiliriz:

 

z =  3-6i             z^' = 5+i

 

z'  = -4+6i            z'^ = 3i

 

z'' = -4-5i            z^^ = 1

 

 

Karmaşık düzlemde eşlenik sayı: Sayının görüntüsünün X eksenine göre simetriği o sayının eşleniğidir. Orijine göre simetriği ise sayının negatifidir.

 

 

 

KARMAŞIK DÜZLEMDE MUTLAK DEĞER

 

Karmaşık düzlemde bir sayının orijine uzaklığına, o noktaya karşılık gelen karmaşık sayının mutlak değeri denir.

  dir.

 

 

[z]=5 eşitliği z noktalarının orjine olan uzaklığını sabit ve 5 birim olduğunu gösterir. O halde bu z noktaları, merkezi orijin ve yarıçapı 5 olan bir çember üzerindedir.

 

 

 

Tanım olarak   [z]=r eşitliği merkezi orijinde ve yarıçapı r olan bir çemberin karmaşık düzlemdeki denklemini gösterir.

 

 

ise   nin anlamı merkezi orijinde ve yarıçapı r olan bir çember ve bu çemberin iç bölgesini gösterir.

 

 ise çemberin sınırladığı iç bölgeyi gösterir. Çember dahil olmadığı için nokta nokta çizilir.

 

 

  ise merkezi orijinde ve yarıçapı r olan çemberin dış bölgesini gösterir.

 

 

 

  ise merkezi orijinde ve yarıçapı r olan çember ve içi hariç dış bölgenin tümünü gösterir.

 

 

Örnek=

 

z=x+yi ve z'=-1+4i ise [z]=[z'] olduğuna göre z noktalarının geometrik yeri nedir?

a)Merkezi orijinde yarıçapı 5 olan çember.

b)Merkezi orijinde yarıçapı 3 olan çember.

c)Merkezi orijinde yarıçapı 4 olan çember.

d)(-3,5)

e)0

 

Cevap=

[z]=[-3+4i] ise   bu da  [z]= 5 eşitliğidir. Yani (bilgi yelpazesi.net) merkezi orijinde yarıçapı 5 olan çemberdir.

Yanıt A şıkkı.

 

Örnek=

  eşitsizliğini sağlayan noktalar karmaşık düzlemde bir bölge oluşturur. Bu bölgenin alanı kaç br karedir?

 

Cevap

 

 

Bu bölge merkezleri orijinde ve yarıçapları 2 ve 4 birim olan iki çemberin sınırladığı bölgedir, alanı:

 

 

BİR KARMAŞIK SAYININ SANAL SAYI İLE ÇARPIMI

 

ve z=x+yi olsun.

 

i.z=i(x+yi) bu da iz=-y+xi olur.

 

iz=-y+xi olduğu için (-y,x) olur ve z noktası etrafında pozitif yönde 90 derece dönünce iz noktasının bulunacağı görülür.

 

Örnek=

a=(5,2) noktası orijin etrafında negatif yönde 90 derece döndürülürse hangi nokta bulunur?

 

Cevap=

Negatif yönde 90 derece döndürmek için -i ile çarpılır.

(5,2)=5+2i dir.

-i(5+2i)=-5i-2  = 2-5i

O halde A'=(2,-5) bulunur.

 

 

KARMAŞIK DÜZLEMDE İKİ NOKTA ARASI UZAKLIĞIN BULUNMASI

 

Karmaşık düzlemde iki nokta arası uzaklığın bunların farkının mutlak değeridir.

 

Sabit bir noktadan eşit uzaklıkta bulunan noktaların geometrik yeri düzlemde bir çemberdir.

 

Buna göre merkezi z'=a+bi ve yarıçapı r olan bir çemberin karmaşık düzlemdeki denklemi [z-z']=r   biçiminde olur.

 

A={z:[z+2i] 2 } gibi ifadelerde A=(0,-2) şeklindedir ve yarıçapı 2 dir.

 

B={z:[z+2] 3 } ise B=(-2,0) şeklindedir ve yarıçapı 3 dür.

 

 

Örnek=

z=4-7i ve z'=1-3i sayılarının karmaşık düzlemdeki görüntüleri arası uzaklık nedir?

 

Cevap=

d=[z-z']=[(4-7i)-(1-3i)]

=[(4-1)+(-7+3)i]=[3-4i]

=  = 5 birim

 

Örneğin\Merkezi z'=2+3i ve yarıçapı 4 olan bir çember denklemi:

[z-(2+3i)]=4  biçimindedir.

 

 

KARMAŞIK SAYILARIN KUTUPSAL KORDİNATLARLA GÖSTERİMİ

 

z=a+bi karmaşık sayısının karmaşık düzlemde orijine birleştiren doğru parçasının [Oz]=r=[z] olur. Oz doğrusunun reel eksenle yaptığı yönlü açı da Q olsun. Karmaşık düzlemde bir r uzunluğu ve Q açısı verildiğinde z noktasının yeri bulunur.

 

Karşıt olarak   bir z noktası verildiğinde r sayısı ve en az bir Q açısı bulunabilir. Q açısı   açılarından biri olabilir. Yani bu açılardan her biri z nin üzerinde bulunduğu ışını belirtir. Bu ışın üzerinde r kadar alınarak z noktası bulunmuş olur.

 

z=0 sayısı için Q belirsizdir. Bundan (bilgi yelpazesi.net) dolayı r=0 almakla karmaşık düzlemde z=0(orijin) notasını göstermiş olur.

 

 

ARGÜMENT

 

Bir karmaşık sayı için reel eksenin pozitif yönü ile yaptığı Q açısına  o karmaşık sayının argümenti denir ve

Arg z=Q biçiminde gösterilir.0  Q <360 arasında alınırsa buna z karmaşık sayısının esas argümenti denir ve Arg z=Q ile gösterilir.

Eğer z nin argümentini genel argüment     ile gösterilir.

 

Esas argümente kısaca argüment denir.

 

 

BİR KARMAŞIK SAYININ KUTUPSAL KORDİNATLARDA YAZILMASI

 

z karmaşık sayısının kutupsal koordinatlarda yazılışı z=r(cosQ+i sinQ) şeklindedir.

r ise    dir.

 

z=r(cosQ+i sinQ) da aradaki işaret daima + olacağına göre bu yazılışı cos den (C), sin den (S) harfi alınarak kısaca r(cosQ+i sinQ)=r cisQ biçiminde yazılır.

 

 

KUTUPSAL KORDİNATLARDA İŞLEMLER

 

Çarpma İşlemi

 

z=r(cosQ+i sinQ)

z'=r'(cos@+i sin@) olduğuna göre

 

z.z'=r.r'(cosQ+i sinQ).(cos@+i sin@)  buradan da

z.z'=r.r'(cos(Q+@)+i sin(Q+@)) bulunur.

 

İki karmaşık sayının çarpımında mutlak değerler çarpılır, argümentler toplanır.

 

 

Bölme İşlemi

 

z=r(cosQ+i sinQ)

z'=r'(cos@+i sin@)  ise

 

z = r =(cos(Q-@)+i sin(Q-@)) olarak bulunur.

z'  r'

 

[z] =r  ve Arg(z)=Q

[z']=r' ve Arg(z)=@ olduğuna göre

 

z = r  Arg(z ) = Q-@  olur.

z'  r'    (z')

 

 

KARE VE KAREKÖK

 

z nin kare ve kareköklerini bulmak için De Moivre formülü kullanılır.

 bulunur.

n=p   içinde geçerlidir.

 q

 

Dikkat edilmesi gereken nokta n=p  olduğu zaman argüment, genel

 q

argüment alınmalıdır. Çünkü k değeri değiştikçe başka sayılar da bulunur.

 

“MATEMATİK DERSİ İLE İLGİLİ KONU ANLATIMLAR " SAYFASINA GERİ DÖNMEK İÇİN
>>>TIKLAYIN<<<

“KONU ANLATIMLI DERSLER " SAYFASINA GERİ DÖNMEK İÇİN
>>>TIKLAYIN<<<

“MATEMATİK DERSİ İLE İLGİLİ TEST SORULARI SORU BANKASI "
SAYFASINA GEÇMEK İSTERSENİZ
>>>TIKLAYIN<<<

“MATEMATİK DERSİ İLE İLGİLİ YAZILI SORULARI "
SAYFASINA GEÇMEK İSTERSENİZ
>>>TIKLAYIN<<<

"
EĞİTİM ÖĞRETİM İLE İLGİLİ BELGELER
” SAYFASINI GÖRMEK İSTERSENİZ
>>>TIKLAYIN<<<

EKLEMEK İSTEDİKLERİNİZ VARSA AŞAĞIDAKİ "Yorum Yaz" kısmına ekleyebilirsiniz.

Yorumlar (1)

.

>Yazan: MeMeT Ökten
>Yorum:
KONU GERCEKTEN COK DETAYLI ANLATILMIS .

>>>YORUM YAZ<<<
Not: Yorum Yaz Bölümünden Yazılar Da Gönderebilirsiniz. Yazıyı belgenizden kopyalayıp
aşağıdaki
Yorumunuz Kutucuğu'na yapıştırmanız yeterli...

 Adınız:
 Yorumunuz :


Yorumunuzda Silmek istediğiniz kelime veya cümle varsa kelimeyi fare ile seçin
ve
delete tuşuna basın...

 


Eklediğiniz yorumlar/yazılar onaylandıktan sonra siteye eklenecektir.

 E Mail
(Zorunlu Değil):


 
 


<<<TELİF HAKKI KONUSU (ALTTAKİ KAYAN YAZI) LÜTFEN OKUYUNUZ !.>>>

...Degerli Ziyaretçilerimiz... Sitemizde sizler için hazirladigimiz binlerce yazi bulunmaktadir... Hassas davranmamiza karsin gözümüzden kaçan bazi yazilar telif hakkiyla korunuyor olabilir... Telif Hakkiyla korunan yazilarla karsilasirsaniz (KAYNAK GÖSTERMENIZ SARTIYLA) yazilarin altindaki YORUM YAZ kismina bildirmenizi rica ederiz... Bu tür yazilar derhal siteden kaldirilacaktir... Saygilarimizla ... Bilgiyelpazesi Ekibi...

Eğitim Öğretim Tüm Konular
Tiyatro Oyunları, Skeçler, Piyesler
Çocuk Şarkıları - Şarkı Sözleri
Kitap Özetleri
Belirli Gün ve Haftalar İle İlgili Tüm Belgeler
Konu Anlatımlı Dersler
İlahiler, İlahi Sözleri
Rehberlik Köşesi Belgeler, Araştırmalar, Yazılar
Roman Özetleri
Soru Bankası, Test Soruları
Yazarların, Şairlerin Hayatı, Eserleri / Kitapları, Edebi Kişilikleri
Yazılı Soruları - Yazılı Arşivi
Atasözleri ve Özellikleri
Belirli Gün ve Haftalar İle İlgili Tüm Belgeler
Coğrafya Dersi İle İlgili Konu Anlatımlar - Testler - Yazılılar
Din Kültürü Ve Ahlak Bilgisi Dersi İle İlgili Yazılılar, Testler
Çeşitli Yazılar, Oradan Buradan
Çocuk Eğitimi
Çocuk Oyunları, Oyunlar
Çocuk Şarkıları - Şarkı Sözleri
Dede Korkut Hikayeleri, Özetleri, Özellikleri
Destan, Destanlarımız Ve Özellikleri
Dil İle Kültür Arasındaki İlişki, Dil Nedir, Kültür Nedir
Edebiyat Dersi İle İlgili Konu Anlatımlar - Test - Yazılı Soruları
Eğitim Bilimleri Dersi İle İlgili Konu Anlatımlar - Test Soruları
Enler Bölüm Bölüm
Fen ve Teknoloji Dersi Konu Anlatımlar - Testler - Yazılılar
Gelişim Ve Öğrenme Psikolojisi Dersi Konu Anlatımlar, Testler
Güzel Sözlerden Seçmeler, Özdeyişler, Vecizeler
Hazır Cevaplar
Hikayelerden Seçmeler
İllerimiz Ve İlçelerimiz Özellikleri Türkiye Tanıtımı
İlginç Ve Eğlenceli Bilgiler
İlkler Bölüm Bölüm
İngilizce Dersi İle İlgili Konu Anlatımlar - Test - Yazılı Soruları
İnkılap Tarihi Dersi Konu Anlatımlar - Testler - Yazılılar
İsimler Ve Anlamları
Karne Bilgileri Öğretmen Görüşü Örnekleri
Kitap Özetleri
Konu Anlatımlı Dersler
Maniler, Manilerimiz
Masallardan Seçmeler
Matematik Dersi İle İlgili Konu Anlatımlar - Test - Yazılı Soruları
Meslek Tanıtımları, Meslek Seçimi, Özellikleri
Muhasebe Dersi İle İlgili Konu Anlatımlar - Test - Yazılı Soruları
Ninni Ninni Ninniler, Ninnilerden Seçmeler
Pratik Bilgiler
Rehberlik Köşesi Belgeler, Araştırmalar, Yazılar
Roman Özetleri
Sayışmaca - Sayışmacalar, Sayışmacalardan Seçmeler
Sizin Gönderdikleriniz
Soru Bankası, Test Soruları
Sözlük Türkçe - İngilizce - Almanca
Şiir Koleksiyonu - Seçme Güzel Şiirler
Tarih Dersi İle İlgili Konu Anlatımlar - Test - Yazılı Soruları
TC İnkılap Tarihi Dersi Konu Anlatımlar - Testler - Yazılılar
Tekerleme - Tekerlemeler, Tekerlemelerden Seçmeler
Tiyatro Oyunları, Skeçler , Piyesler
Türkçe Dersi İle İlgili Konu Anlatımlar - Test Soruları
Türküler, Türkü Sözleri, Türkülerimiz
Uluslararası İlişkiler Ve Politika İle İlgili Konu Anlatımlar
Vatandaşlık, Anayasa, İnsan Hakları Konu Anlatımlar - Testler - Yazılılar
Yazarların, Şairlerin Hayatı, Eserleri / Kitapları, Edebi Kişilikleri
Yazılı Soruları - Yazılı Arşivi 
Devamını Göster >>>

EĞİTİM ÖĞRETİM

egitim-ögretim

KONU ANLATIMLI DERS

YAZILI SORULARI

SORU BANKASI TESTLER

Soru Bankası Test Soruları

REHBERLİK KÖŞESİ

EĞLENELİM GÜLELİM

BİLGİSAYAR OYUNLARI

YEMEK TARİFLERİ

Yemek Tarifleri Beslenme Ve Mutfak

DİNİM İSLAMİYET

SAĞLIKLI YAŞAM

ROMAN HİKAYE ŞİİR