Bilgiyelpazesi Net ÜYELİKSİZ BEDAVA BİLGİ KAYNAĞI Konu Anlatımlar, Test Soruları, Yazılı Soruları
Eğitim Öğretim Tüm Konular
Tiyatro Oyunları, Skeçler, Piyesler
Çocuk Şarkıları - Şarkı Sözleri
Kitap Özetleri
Belirli Gün ve Haftalar İle İlgili Tüm Belgeler
Konu Anlatımlı Dersler
İlahiler, İlahi Sözleri
Rehberlik Köşesi Belgeler, Araştırmalar, Yazılar
Roman Özetleri
Soru Bankası, Test Soruları
Yazarların, Şairlerin Hayatı, Eserleri / Kitapları, Edebi Kişilikleri
Yazılı Soruları - Yazılı Arşivi
Atasözleri ve Özellikleri
Belirli Gün ve Haftalar İle İlgili Tüm Belgeler
Coğrafya Dersi İle İlgili Konu Anlatımlar - Testler - Yazılılar
Din Kültürü Ve Ahlak Bilgisi Dersi İle İlgili Yazılılar, Testler
Çeşitli Yazılar, Oradan Buradan
Çocuk Eğitimi
Çocuk Oyunları, Oyunlar
Çocuk Şarkıları - Şarkı Sözleri
Dede Korkut Hikayeleri, Özetleri, Özellikleri
Destan, Destanlarımız Ve Özellikleri
Dil İle Kültür Arasındaki İlişki, Dil Nedir, Kültür Nedir
Edebiyat Dersi İle İlgili Konu Anlatımlar - Test - Yazılı Soruları
Eğitim Bilimleri Dersi İle İlgili Konu Anlatımlar - Test Soruları
Enler Bölüm Bölüm
Fen ve Teknoloji Dersi Konu Anlatımlar - Testler - Yazılılar
Gelişim Ve Öğrenme Psikolojisi Dersi Konu Anlatımlar, Testler
Güzel Sözlerden Seçmeler, Özdeyişler, Vecizeler
Hazır Cevaplar
Hikayelerden Seçmeler
İllerimiz Ve İlçelerimiz Özellikleri Türkiye Tanıtımı
İlginç Ve Eğlenceli Bilgiler
İlkler Bölüm Bölüm
İngilizce Dersi İle İlgili Konu Anlatımlar - Test - Yazılı Soruları
İnkılap Tarihi Dersi Konu Anlatımlar - Testler - Yazılılar
İsimler Ve Anlamları
Karne Bilgileri Öğretmen Görüşü Örnekleri
Kitap Özetleri
Konu Anlatımlı Dersler
Masallardan Seçmeler
Matematik Dersi İle İlgili Konu Anlatımlar - Test - Yazılı Soruları
Muhasebe Dersi İle İlgili Konu Anlatımlar - Test - Yazılı Soruları
Ninni Ninni Ninniler, Ninnilerden Seçmeler
Pratik Bilgiler
Rehberlik Köşesi Belgeler, Araştırmalar, Yazılar
Roman Özetleri
Sayışmaca - Sayışmacalar, Sayışmacalardan Seçmeler
Sizin Gönderdikleriniz
Soru Bankası, Test Soruları
Sözlük Türkçe - İngilizce - Almanca
Şiir Koleksiyonu - Seçme Güzel Şiirler
Tarih Dersi İle İlgili Konu Anlatımlar - Test - Yazılı Soruları
TC İnkılap Tarihi Dersi Konu Anlatımlar - Testler - Yazılılar
Tekerleme - Tekerlemeler, Tekerlemelerden Seçmeler
Tiyatro Oyunları, Skeçler , Piyesler
Türkçe Dersi İle İlgili Konu Anlatımlar - Test Soruları
Türküler, Türkü Sözleri, Türkülerimiz
Uluslararası İlişkiler Ve Politika İle İlgili Konu Anlatımlar
Vatandaşlık, Anayasa, İnsan Hakları Konu Anlatımlar - Testler - Yazılılar
Yazarların, Şairlerin Hayatı, Eserleri / Kitapları, Edebi Kişilikleri
Yazılı Soruları - Yazılı Arşivi 
Devamını Göster >>>

EĞLENELİM GÜLELİM

BİLGİSAYAR OYUNLARI

YEMEK TARİFLERİ

Yemek Tarifleri Beslenme Ve Mutfak

DİNİM İSLAMİYET

EĞİTİM ÖĞRETİM

egitim-ögretim

KONU ANLATIMLI DERS

YAZILI SORULARI

SORU BANKASI TESTLER

Soru Bankası Test Soruları

REHBERLİK KÖŞESİ

ROMAN HİKAYE ŞİİR

 

   

Geri Dönüş Yolu: Eğitim Öğretim İle İlgili Belgeler > Konu Anlatımlı Dersler > Matematik Dersi İle İlgili Konu Anlatımlar

ARİTMETİK DİZİ, DİZİLER, ÖZELLİKLERİ, DİZİLER (MATEMATİK DERSİ İLE İLGİLİ KONU ANLATIMLAR, ÇÖZÜMLÜ ÖRNEKLER, SORULAR)

 

Ardısık terimlerinin arasındaki farkın sabit oldugu dizilere aritmetik dizi denir.

( n) = (1, 2, 3, 4, ..., n, ...) dizisi bir aritmetik dizidir örnegin, çünkü her ardısık terim arasındaki fark 1’dir.

 

Dikkat edin, farka –1 demedik çünkü bu farkı bulurken iki terim arasındaki farkın mutlak degerini almıyoruz, herhangi bir terimden kendinden bir önce gelen terimi çıkartıyoruz.

 

Adına da ortak fark diyoruz. Ortak farkı, d’yle göstermek adet olmus, biz de öyle yapacagız.

 

(n) = (1, 2, 3, 4, ..., n, ...) aritmetik dizisinde

 

Benzer sekilde (2n + 7) = (9, 11, 13, ..., 2n + 7, ...) dizisi de aritmetik dizidir. Bunda ortak fark 2’dir.

(3− 4n) = (−1,− 5,− 9, ..., 3− 4n, ...) dizisi de bir aritmetik dizidir. Ortak farkı –4’tür.

Tahmin edilecegi üzere (an) (5) (5, 5, 5, ..., 5, ...) n a = = gibi sabit diziler de aritmetik dizidir, ortak farkı 0’dır.

Genel olarak, (an + b) aritmetik dizisinin ortak farkı a’dır diyebiliriz, neden oldugunu siz düsünün.

 

 

Soru 1.

dizisi bir aritmetik dizi midir? Öyleyse, ortak farkı kaçtır?

 

Çözüm: Eger aritmetik diziyse ardısık terimleri arasındaki fark sabit bir sayı olmalı, devamlı degismemeli.

Yanılmamak için 2’nci ve 1’inci terimin arasındaki farkla, 4’üncü ve 3’üncü terimler arasındaki farkları kıyaslamak yerine (n + 1)’inci ve n’ninci terimler arasındaki farka bakalım:

yani sabit oldugundan dizi aritmetik olup, ortak farkı 3’dür.

 

 

Soru 2.

dizilerinden hangisi veya hangileri bir aritmetik dizidir?

 

Çözüm: a ve b birer reel sayı olmak üzere cn = an + b genel terimine sahip her (cn ) dizisi aritmetiktir.

 farkını hesaplayanlar cevabın her zaman a çıkacagını göreceklerdir. Bundan

dolayı  aritmetik dizidir.

Hatta ortak farklar da sırasıyla

Fakat (cn) aritmetik dizi degildir. Çünkü a2 – a1 ile a3 – a2 farkları esit degildir. İnanmayan hesaplasın,görsün.

 

 

Bir aritmetik dizinin herhangi bir terimini bulmak:

 

Aritmetik dizilerin herhangi iki terimi veya herhangi bir terimiyle ortak farkı biliniyorsa, dizinin tüm terimleri bulunabilir.

Eni sonu iki bagımsız bilgiye ihtiyaç vardır. Çünkü terimler arasında asagıdaki gibi bir iliski vardır:

Yukardan da görüldügü gibi ilk terim ve ortak fark bilgisiyle bulunamayacak terim yok. Hatta birkaç oynamayla baska iliskiler de bulmak mümkün.

 

Örnegin,

.

Yani iki terim arasındaki fark, bu terimlerin indisleri farkı kadar d.

Anlayacagınız söyle bir esitlikten bahsedebiliriz:

Bu esitligi, çözümlerde sıkça kullanacagız.

Lütfen unutmayın. Ama (bilgi yelpazesi.net) unutmamak için ezberlemeye çalısmayın, neden böyle olduguna bir kez daha kafa yorun.

 

 

Soru 3. ­lk terimi a1 = 3, ortak farkı d = 2 olan bir aritmetik dizinin besinci terimini ve genel terimini bulunuz.

 

Çözüm:  soruluyor. Bunların formüllerini yukarda çıkarmıstık

ve

Besinci terimi, genel terimi bulduktan sonra n’ye 5 vererek de bulabilirdik.

 

 

Soru 4. ­lk terimi a1 = -2, ortak farkı

Olan bir aritmetik dizinin 12’nci terimini bulunuz.

 

Çözüm:

 

 

Soru 5. ­lk terimi 2, ortak farkı

olan bir aritmetik dizinin kaçıncı terimi 3’tür?

 

Çözüm: Diyelim ki t’ninci terimi 3. O halde

esitligi çözülürse t = 5 bulunur.

 

 

Soru 6. Üçüncü terimi a3 = 1, ortak farkı

olan bir aritmetik dizinin kaçıncı terimi 5’tir?

 

Çözüm: Yine t’ninci terim olsun. O halde

esitligi çözülürse t = 15 bulunur.

 

 

Soru 7. ­lk terimi –3, son terimi –91 ve ortak farkı -4 olan sonlu aritmetik dizinin terim sayısı kaçtır?

 

Çözüm: Bunu sayılar dersinde ögrendigimiz terim sayısı formülünden de yapabiliriz ama oradan yapmayacagız.

Dizimiz n terimli olsun. O halde  olur.

denklemi çözülürse n = 23 bulunur.

 

 

Soru 8. 14 ve 50 arasına, bu sayılarla birlikte aritmetik dizi olusturacak biçimde 11 terim daha yerlestirilirse bu dizinin 9’uncu terimi kaç olur?

 

Çözüm: 2 terim hali hazırda vardı, 11 terim daha geldi, etti 13 terim. O halde son durumda a1 =14 ve a13 = 50 oldu.

esitliginden 12d = 36 yani d = 13 bulunur.

Simdi sıra 9’uncu terimde

 

 

Soru 9. 8 ile 50 sayıları arasına, bu sayılarla aritmetik dizi olusturacak sekilde 62 terim yerlestirilirse, bu dizinin 19’uncu terimi kaç olur?

 

Çözüm: Var olan 2 terime 62 terim geldi ve dizimiz 64 terimli oldu. Su halde

esitliginden

bulunur.

Şimdi 19’uncu terimi hesaplayalım:

 

 

Soru 10. Bir aritmetik dizide

İse a19 kaçtır?

 

Çözüm: 26 12 a − a = (26 −12)d =14d oldugunu biliyoruz.

Degerleri yerlerine yazarak d’yi bulalım:

79 – 9 = 70 = 14d esitliginden d = 5 bulunur.

O halde

olur.

Simdi burada biraz soluklanalım. Buna degecek çünkü sonunda yukardaki soruyu 1 saniyede çözmeyi ögrenecegiz.

Aritmetik dizinin en karakteristik özelliklerinden biri de dizinin herhangi terimin, kendine esit uzaklıkta bulunan terimlerin aritmetik ortası oldugudur.

Bunu nerden mi çıkardık?

Dinleyin:

Bir aritmetik diziden herhangi bir terim seçelim, örnegin n’ninci terim olsun. Simdi de bu terime esit uzaklıkta iki terim daha alalım. Bunlar da örnegin (n – p)’ninci ve (n + p)’ninci terimler olsun.

Kanıtlamak istedigimiz esitlik:

oldugu rahatlıkla görülebilir. İşte bu yüzden bir önceki soruda

esitligine hemencecik ulasabilirdik.

 

 

Soru 11. Besinci terimi 17, 23’üncü terimi 47 olan bir aritmetik dizinin 14’üncü terimi kaçtır?

 

Çözüm: 14’üncü terimin 5’inci ve 23’üncü terimlere uzaklıkları esit oldugundan,

olmalıdır ki buradan a14 = 32 bulunur.

 

 

Soru 12. (an) bir aritmetik dizi,

ise a21 kaçtır?

 

Çözüm: 16’ıncı terimin 11 ve 21’inci terimlere uzaklıkları esit oldugundan yine aritmetik ortadan faydalanacagız.

 

 

Soru 13. (an) n a bir aritmetik dizi,

ise a17 kaçtır?

 

Çözüm

 

 

Soru 14. 2, loga 3, 8 sayıları bir aritmetik dizinin ardısık üç terimiyse a kaçtır?

 

Çözüm: loga 3 = 5 olmalı. O halde

 

 

Soru 15. 5, a, b, c, 13 sayıları bir aritmetik dizinin ardısık bes terimiyse a + b + c toplamı kaçtır?

 

Çözüm: 5 + 13 = a + c = 2b oldugundan a + c = 18 ve b = 9 olur. O halde cevap 27.

 

 

Soru 16.

olan bir aritmetik dizinin genel terimi nedir?

 

Çözüm:

Genel terim demek n’ninci terim demek oldugundan ve elimizde 5’inci terim oldugundan ikisi arasında bir baglantı (bilgi yelpazesi.net) kuracagız.

 

 

Soru 17.

olan bir aritmetik dizide a8 kaçtır?

 

Çözüm:

2’dir.

 

 

Soru 18. Bir (an) dizisinde

için

ise a9 kaçtır?

 

Çözüm:

 

 

İlk n terimin toplamının bulunması:

 

Aritmetik dizilerde artıs miktarı aynı oldugundan Sayılar dersinde kanıtladıgımız

eşitligini kullanabiliriz. Ama kullanmayacagız.

Ona denk baska bir formül çıkartacagız. O daha kullanıslı oldugundan bundan sonra onu kullanacagız.

İlk n terimin toplamını Sn ile gösterecegiz.

oldugundan, her terimi a1’e baglı olarak yazıp, öyle toplayalım bakalım ne çıkıyor…

 

Simdi bu esitlikleri taraf tarafa toplayacagız. Toplam n tane satır olduguna dikkat ediniz.

 

 

Soru 19. 6 + 11 + 16 + … + 116 + 121 toplamı, bir aritmetik dizinin ilk n teriminin toplamı ise bu toplam kaçtır?

 

Çözüm: Bu ilk soru oldugundan 3 degisik çözüm yolu verelim. İki sayılar dersindeki formülümüzden, ikincisi toplam sembolünden yararlanarak, üçüncüsü de Sn formülünden…

 

Üçüncü Yol. Bir önceki çözümden dizinin 24 terimli oldugunu ögrendik. Sn formülünde n yerine 24 yazacagız:

 

 

Soru 20. Genel terimi

olan bir aritmetik dizinin ilk 21 teriminin toplamı kaçtır?

 

Çözüm: Genel terim belli oldugundan a1 ve d’yi biliyoruz demektir, o halde ne duruyoruz?

 

 

Soru 21. Birinci terimi 8, ikinci terimi

 

 

Soru 22. ­lk terimi

ve ilk 18 teriminin toplamı 23 olan bir aritmetik dizinin ortak farkı kaçtır?

 

Çözüm:

 

 

Soru 23. 10 terimli bir aritmetik dizinin terimlerinin toplamı 20, son ve ilk terimlerinin farkı 8 ise bu aritmetik dizinin genel terimini bulunuz.

 

Çözüm: Verilen bilgileri matematik diline bir çevirelim bakalım.

Genel terimi bulmak için a1 ve d’yi bulmalıyız. Verilen ikinci esitlikten bunları bulabiliriz. Simdi dediklerimizi yapmaya baslayalım, sonra da baska bir yol daha gösterelim.

olacagından a10 + a1 = 4’tür. Diger yandan a10 – a1 = 8 verildiginden a1 = –2 bulunur. Gerisi yukardaki gibi yapılır.

 

 

Soru 24. Bir aritmetik dizide ilk n terimin toplamı

ise bu dizinin 8’inci terimi kaçtır?

 

Çözüm: İşte en begendigim soru tarzı bu. Çözümü çok zekice. 8’inci terimi söyle bulacagız:

İlk 8 terimin toplamından, ilk 7 terimin toplamını çıkartacagız.

 

 

Soru 25. Bir aritmetik dizide ilk n terimin toplamı

ise a15 kaçtır?

 

Çözüm: Bu sefer ilk 15 terim toplamından ilk 14 terim toplamını çıkartacagız.

 

 

Soru 26. Bir aritmetik dizide 42’nci terim 101, 30’uncu terim 61 ise bu dizinin ilk 71 teriminin toplamı kaçtır?

 

Çözüm:

 

 

Soru 27. Bir aritmetik dizide 29’uncu terim 37, 17’nci terim 15 ise bu dizide S45 kaçtır?

 

Çözüm: Bir öncekiyle benzer soru oldugundan çözümü de bir öncekiyle benzer olacak.

 

 

Soru 28. Bir ögrenci ilk gün bir kitaptan 10 sayfa okuyor. Diger günler ise bir önceki gün okudugundan

5 sayfa fazla okuyor. Bu (bilgi yelpazesi.net) ögrenci, onuncu günün sonunda toplam kaç sayfa okumus olur?

 

Çözüm: Her gün okudugu sayfa sayısındaki artıs miktarı sabit oldugundan, ilk günden itibaren her gün okunan sayfa sayıları bir aritmetik dizi olustururlar.

O halde

kaçtır diye algılamamız lazım soruyu.

 

 

Soru 29. Bir dısbükey besgenin iç açı ölçüleri bir aritmetik dizinin ardısık bes terimini olusturacak sekildeyse, ortanca açının ölçüsü kaç derecedir?

 

Çözüm:

 

 

Soru 30. Bir dısbükey besgenin iç açı ölçüleri bir aritmetik dizinin ardısık bes terimini olusturacak sekildedir. En küçük ölçüye sahip açının ölçüsü 800 ise en büyük ölçüye sahip olanın ölçüsü kaç derecedir?

 

Çözüm: Açı ölçülerini tekrar yukardaki gibi adlandıralım.

Ortanca yani a3 daima 1080 olacagından

ve

 

“MATEMATİK DERSİ İLE İLGİLİ KONU ANLATIMLAR " SAYFASINA GERİ DÖNMEK İÇİN
>>>TIKLAYIN<<<

“KONU ANLATIMLI DERSLER " SAYFASINA GERİ DÖNMEK İÇİN
>>>TIKLAYIN<<<

“MATEMATİK DERSİ İLE İLGİLİ TEST SORULARI SORU BANKASI "
SAYFASINA GEÇMEK İSTERSENİZ
>>>TIKLAYIN<<<

“MATEMATİK DERSİ İLE İLGİLİ YAZILI SORULARI "
SAYFASINA GEÇMEK İSTERSENİZ
>>>TIKLAYIN<<<

"
EĞİTİM ÖĞRETİM İLE İLGİLİ BELGELER
” SAYFASINI GÖRMEK İSTERSENİZ
>>>TIKLAYIN<<<

EKLEMEK İSTEDİKLERİNİZ VARSA AŞAĞIDAKİ "Yorum Yaz" kısmına ekleyebilirsiniz.

Yorumlar (HenüzYorumYapılmamış)

.

>>>YORUM YAZ<<<
Not: Yorum Yaz Bölümünden Yazılar Da Gönderebilirsiniz. Yazıyı belgenizden kopyalayıp
aşağıdaki
Yorumunuz Kutucuğu'na yapıştırmanız yeterli...

 Adınız:
 Yorumunuz :


Yorumunuzda Silmek istediğiniz kelime veya cümle varsa kelimeyi fare ile seçin
ve
delete tuşuna basın...

 


Eklediğiniz yorumlar/yazılar onaylandıktan sonra siteye eklenecektir.

 E Mail
(Zorunlu Değil):


 
 


<<<TELİF HAKKI KONUSU (ALTTAKİ KAYAN YAZI) LÜTFEN OKUYUNUZ !.>>>

...Degerli Ziyaretçilerimiz... Sitemizde sizler için hazirladigimiz binlerce yazi bulunmaktadir... Hassas davranmamiza karsin gözümüzden kaçan bazi yazilar telif hakkiyla korunuyor olabilir... Telif Hakkiyla korunan yazilarla karsilasirsaniz (KAYNAK GÖSTERMENIZ SARTIYLA) yazilarin altindaki YORUM YAZ kismina bildirmenizi rica ederiz... Bu tür yazilar derhal siteden kaldirilacaktir... Saygilarimizla ... Bilgiyelpazesi Ekibi...